Кто такой Аналитик Данных в 2022 году и сколько он зарабатывает? Обзор профессии, онлайн-курсы.

Аналитик данных – одна из наиболее востребованных и перспективных профессий не только на отечественном, но и зарубежном рынке труда. Спрос на специалистов в этой сфере растет из года в год, открывая интересные, высокооплачиваемые вакансии, позволяющие работать соискателю в удобном для него режиме.

Кто такой Аналитик Данных?

Аналитик данных – это специалист по сбору, обработке и анализу массивов информации.

Задача специалиста заключается в выявлении закономерностей, которые могут определить перспективное направление развития бизнеса.

Алгоритм работы специалиста состоит из следующих этапов:

  • Сбор информации путем формирования запросов в базы данных;
  • Изучение параметров набора путем определения типа собранной информации и способов ее сортировки;
  • Предварительная обработка путем исключения ошибок и упорядочивания, приведения информационного массива в единую форму;
  • Интерпретация путем анализа и решения поставленной задачи;
  • Формирование вывода;
  • Визуализация путем подтверждения или опровержения выдвинутой гипотезы.

Аналитик Данных — его заработок?

Сегодня в России более 13000 компаний находятся в поиске специалистов в области аналитики, и их количество постоянно увеличивается. Заработная плата начинающего аналитика без опыта работы составляет в среднем от 65 тыс. руб., специалиста со стажем 3-6 лет от 80 тыс. руб. Около 8% компаний предлагают заработную плату от 200 тыс. руб., не ограничиваясь верхним пределом.

Заработная плата аналитика данных:

  • В Москве – от 65 000 руб;
  • Проектная занятость – от 165 000 руб;
  • Удаленная работа – от 95 000 руб.

Необходимые навыки и скиллы для профессии Аналитик Данных

Аналитик данных должен:

  • Работать с инструментами доступа и обработки данных (SQL, Google Sheets, СУБД);
  • Знать языки программирования (Python, R);
  • Знать основы статистики и высшей математики;
  • Обладать навыками BI-аналитики;
  • Использовать нейронные сети для решения реальных задач;
  • Визуализировать данные путем разработки дашбордов и интерактивной графики.

Уровень профессионализма работника определяется тремя составляющими:

  • Математика;
  • Программные инструменты;
  • Понимание бизнеса.

Онлайн-Курсы Обучения Аналитике Данных

Для старта в Профессии необходимо понять основы профессии. Поэтому изучаем для начала курсы по аналитике данных с нуля бесплатно, затем покупаем платные курсы с возможностью трудоустройства.

1. «Обучение Data Science: будущее для каждого»

Один из курсов по Data Science и аналитике данных

Длительность курса составляет 3 урока в формате записей вебинаров и текстовых материалов.

Обратная связи нет,зато есть сертификат.

Начинка:

  1. Data Science: будущее для каждого. Разберёмся, почему работа с данным настолько актуальна. Какие направления и профессии есть в сфере Data Science, чем они отличаются и как определить направление для себя.
  2. Базовые навыки: с чего начать. Расскажем об обязательных навыках каждого аналитика и его инструментарии. Напишем первый код с помощью языка запросов SQL.
  3. Как найти работу: первые шаги. Кого ищут работодатели. Пошаговый план для старта карьеры в сфере Data Science. Как составить карту ваших компетенций.

«Профессия Data Scientist»

Профессия Data Scientist

Что ты получишь? За два года обучения по 10 часов в неделю ты освоишь востребованные навыки в Data Science и соберёшь портфолио проектов. Начнёшь практиковаться на реальных бизнес-кейсах, подтянешь soft skills (коммуникация с бизнесом и др).

Формат учёбы: короткие видео и вебинары с разбором заданий + тесты и интерактивные задания + практике на тренажере + общий чат с 6000 студентами для решения вопросов + личный наставник в решении проблем.

Изюминка курса: помощь в трудоустройстве, общение с экспертами и решение сложных вопросов с ментором.

Получаешь в итоге:

  • Персонального тьютора, который следит за вашим прогрессом и остается с вами на связи весь курс
  • Личные консультации с менторами и постоянная обратная связь по проделанной работе
  • Дружное сообщество, которое общается в Slack и на вебинарах
  • Поддержку по всем учебным вопросам в течение 1 часа в рабочее время
  • Групповые проекты и работа в командах

2. «Введение в Data Science‎ и машинное обучение»

Степик обучение

Длительность курса составляет 30 уроков с выдачей сертификата. Формат как обычно проходит в виде видеоуроков с тестами и выполнением домашней работы.

Начинка

  1. О чём курс?
  2. Big Data, Deep Machine Learning — основные понятия.
  3. Модель, начнём с дерева.
  4. Pandas, Dataframes.
  5. Фильтрация данных
  6. Группировка и агрегация.
  7. Визуализация, seaborn.
  8. Практические задания: Pandas.
  9. Секретный гость.
  10. Stepik ML contest — это ещё что такое?
  11. Stepik ML contest — data preprocessing.
  12. Какого музыканта Beatles я загадал или entropy reduction.
  13. Немного теории и энтропии.
  14. Titanic: Machine Learning from Disaster.
  15. Обучение, переобучение, недообучение и кросс-валидация.
  16. Последний джедай или метрики качества модели.
  17. Подбор параметров и ROC and Roll.
  18. Практика, Scikit-learn, fit, predict, you are awesome.
  19. ML на практике — автокорректор ошибок правописания.
  20. Секретный гость.
  21. Stepik ML contest.
  22. Снова возвращаемся к деревьям.
  23. Random forest.
  24. Зачем знать что-то ещё, если есть Random Forest?
  25. Секретный гость.
  26. И на Марсе будут яблони цвести.
  27. Нейроэволюция.
  28. Трюки в Pandas.
  29. Вот и всё, а что дальше?
  30. Stepik ML contest.

Что усвоишь

  • Основные понятия Data Science и Machine Learning
  • Наиболее популярные Python-библиотеки для анализа данных — Pandas и Scikit-learn

Преимущества

  • Начать обучение можно сразу после регистрации
  • Обучение проводят лучшие преподаватели Института биоинформатики
  • Современная программа обучения
  • Изложение материала простым языком
  • Можно бесплатно получить сертификат по окончании обучения

3. «Нейронные сети‎»

Обучение нейронным сетям

Формат уроков представляет собой видео с выполнением тестов и заданий, а длительность курса из 24 уроков. Есть обратная связь.

Нет сертификата

Начинка

  1. Основы линейной алгебры.
  2. Перцептрон и градиентный спуск.
  3. Алгоритм обратного распространения ошибки.
  4. Мониторинг состояния сети.
  5. Заключение.

Твои навыки после обучения

  • Основы линейной алгебры (векторы и матрицы)
  • Принципы работы нейронных сетей
  • Применение нейронных сетей для решения практических задач

Преимущества

  • Большая обучающая программа
  • Интерактивные тесты и задачи

4. «Знакомство с R ‎и базовая статистика»

Обучение статистике

Длительность курса составляет 20 часов, формат материала видеообучение с выполнением тестов + текстовые пометки.

Сертификат выдаётся после покупки подписки.

В этом из бесплатных курсов по Data Science разберёшь основы статистики и познакомишься с основами языка статистического программирования R.

Будешь использовать средства визуализации (диаграммы, графики и т.п.), чтобы сделать результаты анализа максимально доступными и понятными. Научишься рассчитывать основные описательные статистики: медиану и квантили, среднее и стандартное отклонение..

Твои науки

  • Основы языка программирования R
  • Статистическая обработка данных
  • Создание автоматизированных отчетов с помощью R Markdown и Knitr
  • Тестирование гипотез
  • Визуализация результатов анализа

Преимущества

  • Обратная связь с преподавателями на форуме
  • Гибкие сроки изучения материала
  • Опытные преподаватели
  • Интересная подача материала
  • Хорошие примеры
  • Можно получить сертификат

5. «Эконометрика‎»

Экономическая метрика

Длительность курса составляет 30 часов в формате видеоуроков с выполнением тестов.

Выдача сертификата предусмотрена.

Ты будешь подробно изучать линейные регрессионные модели, рассмотришь наиболее частые отклонения от предпосылок классической линейной регрессии.

Изучишь базовые модели (логит и пробит) для качественных зависимых переменных. Наряду с теоретической основой ты будешь работать с реальными данными, используя статистический пакет R.

Твои навыки после обучения

  • Понимание методов наименьшего квадрата и максимального правдоподобия
  • Исследование закономерности в реальных данных
  • Работа со случайными величинами в R
  • Прогнозирование переменной y
  • Проверка гипотез о коэффициентах в R
  • Понимание взаимодействия переменных

Преимущества

  • Насыщенная программа обучения
  • Работа с материалами в удобное время
  • Опытный преподаватель
  • Много прикладных задач
  • Возможность улучшить имеющиеся знания в эконометрике
  • Общение на форуме с преподавателем

6. «Математическая статистика‎»

Аналитика данных

Длительность курса составляет 29 уроков в формате видео. Выполняешь домашку и тесты.

Выдаётся сертификат после обучения.

Начинка учёбы

  1. Выборка. Описательная статистика.
  2. Точечные оценки. Свойства и методы построения.
  3. Доверительные интервалы. Стратифицированные выборки.
  4. Статистические гипотезы. Параметрические критерии.
  5. Критерии однородности.
  6. Критерии согласия. Таблицы сопряжённости.
  7. Регрессионный анализ.
  8. Заключительный модуль.

Какие знания и навыки получите:

  • Общее понимание теории вероятности
  • Понимание описательной статистики
  • Корреляционный анализ
  • Интервальная оценка
  • Методы построения точечных оценок
  • Доверительные интервалы
  • Регрессионный анализ

Преимущества

  • Обучение возможно в любое время
  • Много полезной информации в свободном доступе
  • Опытный спикер
  • Материалы подкреплены примерами
  • Лёгкая подача информации

7. «Машинное обучение‎»

Машинное обучение

Слушатели курса узнают, как выглядят большие данные, научатся их обрабатывать: восстанавливать пропущенные значения, удалять аномалии, предсказывать значения признаков.

Также слушатели научатся анализировать модели искусственного интеллекта, находить их сильные и слабые стороны, аргументировать свою точку зрения в вопросах, связанных с искусственным интеллектом.

Продолжительность обучения составляет 71 урок в формате видео + тесты с текстовыми материалами.

Обучающая программа

  1. Введение в машинное обучение и основные понятия статистики.
  2. Восстановление пропущенных значений.
  3. Поиск выбросов и аномалий.
  4. Кластеризация.
  5. Задача предсказания, линейная регрессия.
  6. Классификация, kNN, кросс-валидация.
  7. Деревья в машинном обучении.
  8. Линейные классификаторы.
  9. Вероятностные алгоритмы. Наивный Байес.
  10. Ансамбли алгоритмов.
  11. Отбор признаков и объектов.

Твои навыки:

  • Построение моделей машинного обучения
  • Обработка таблиц с данными
  • Восстановление данных с помощью искусственного интеллекта
  • Освоение необходимых терминов на тему машинного обучения для общения с будущими заказчиками
  • Понимание того, какие задачи можно доверить ЭВМ

Платные Курсы Обучения Аналитика Данных

НаименованиеПлатформа учёбыПродолжительностьСтоимость
Аналитик данныхНетология10 мес.66000 руб.
Аналитик данных с нуля до middleНетология12 мес.96000 руб.
Аналитика данныхSkillFactory6 мес.69000 руб.
Аналитика данных PROSkillFactory10 мес.102000 руб.
Python для анализа данныхSkillFactory2 мес.24000 руб.
SQL для анализа данныхSkillFactory2 мес.16800 руб.

В чём фишка Платных Курсов?

  • Качественное профессиональное образование является залогом успешной карьеры.
  • Главным преимуществом обучения на коммерческой основе является высокое качество обучающих материалов, которые обеспечивают планомерное и глубокое изучение актуальных вопросов, а также индивидуальный подход к каждому студенту.
  • Прохождение платного курса предусматривает выдачу официального документа – сертификата, подтверждающего обучение по профессии, и предъявляемого при устройстве на работу.

Заключение

Непрерывное увеличение потока информации и необходимость ее обработки делает профессию аналитика одной из наиболее востребованных. Растущий спрос со стороны нанимателей обеспечивает высокий уровень оплаты труда и удобные условия работы.

Евгений Волик

Хэй! Занимаюсь написанием полезных статей на своём блоге. Выжимаю из темы максимум, поэтому оставайся со мной! Ведь тебя ждёт путешествие в мир онлайн-обучения, финансов и саморазвития.

Не забудь подписаться, для тебя есть подарок.

Оцените автора
( Пока оценок нет )
Evgenev.ru
Добавить комментарий