Кто такой этот Аналитик в 2022 году и какая его зарплата? Обзор профессии, курсы.

🔥Привет, друзья! Сегодня рассмотрим ТОП профессию в сфере интернет — аналитик.

Разберём основные требования, необходимые навыки для получения этой профессии, уровень зарплат и сможем дать список из курсов для обучения аналитика.

Аналитик — это человек, который анализирует большие объёмы информации и помогают бизнесу совершенствоваться.

Рекомендую не торопиться закрывать эту страницу, потому что вы упустите возможность получить хорошую профессию с большой зарабатной платой.

Обязательно дочитываем статью до конца, ведь в конце статьи будет приятный бонус.

⚡️А мы начинаем! ⚡️

Что делают аналитики и чем занимаются?

Обязанности на примере одной из вакансий:

  • Сбор, анализ требований к системе;
  • Формализация и согласование требований;
  • Передача требований в разработку;
  • Консультации членов команды;
  • Согласование тестовых сценариев;
  • Участие в тестировании разработанных компонентов, при необходимости;
  • Участие в подготовке документации;

Что должен уметь аналитик? 

Требования к аналитикам:

  • Понимание стандартных алгоритмов;
  • Понимание принципов построения архитектуры систем;
  • Понимание жизненного цикла разработки программного обеспечения;
  • Понимание способов интеграции между системами (SOAP/REST/шина данных/прямые запросы), знакомство с форматами XML, JSON;
  • Опыт написания проектной документации (ТЗ, спецификации);
  • Опыт работы с Confluence и Jira;
  • Опыт работы системным и/или бизнес-аналитиком от 1 года;
  • Умение работать с большим объемом информации и в режиме многозадачности;

Зарплата специалистов

Аналитик в 2022 году

Количество вакансий с указанной зарплатой аналитика по всей России:

  • от 80 000 руб. – 11 595
  • от 145 000 руб. – 5 219
  • от 215 000 руб. – 1 939
  • от 285 000 руб. – 945
  • от 350 000 руб. – 402

Обучение на аналитика в 2022 году — Рейтинг 5 сайтов

1. «Обучение Data Science: будущее для каждого»

Один из курсов по Data Science и аналитике данных

Длительность курса составляет 3 урока в формате записей вебинаров и текстовых материалов.

Обратная связи нет,зато есть сертификат.

Начинка:

  1. Data Science: будущее для каждого. Разберёмся, почему работа с данным настолько актуальна. Какие направления и профессии есть в сфере Data Science, чем они отличаются и как определить направление для себя.
  2. Базовые навыки: с чего начать. Расскажем об обязательных навыках каждого аналитика и его инструментарии. Напишем первый код с помощью языка запросов SQL.
  3. Как найти работу: первые шаги. Кого ищут работодатели. Пошаговый план для старта карьеры в сфере Data Science. Как составить карту ваших компетенций.

«Профессия Data Scientist»

Профессия Data Scientist

Что ты получишь? За два года обучения по 10 часов в неделю ты освоишь востребованные навыки в Data Science и соберёшь портфолио проектов. Начнёшь практиковаться на реальных бизнес-кейсах, подтянешь soft skills (коммуникация с бизнесом и др).

Формат учёбы: короткие видео и вебинары с разбором заданий + тесты и интерактивные задания + практике на тренажере + общий чат с 6000 студентами для решения вопросов + личный наставник в решении проблем.

Изюминка курса: помощь в трудоустройстве, общение с экспертами и решение сложных вопросов с ментором.

Получаешь в итоге:

  • Персонального тьютора, который следит за вашим прогрессом и остается с вами на связи весь курс
  • Личные консультации с менторами и постоянная обратная связь по проделанной работе
  • Дружное сообщество, которое общается в Slack и на вебинарах
  • Поддержку по всем учебным вопросам в течение 1 часа в рабочее время
  • Групповые проекты и работа в командах

2. «Введение в Data Science‎ и машинное обучение»

Степик обучение

Длительность курса составляет 30 уроков с выдачей сертификата. Формат как обычно проходит в виде видеоуроков с тестами и выполнением домашней работы.

Начинка

  1. О чём курс?
  2. Big Data, Deep Machine Learning — основные понятия.
  3. Модель, начнём с дерева.
  4. Pandas, Dataframes.
  5. Фильтрация данных
  6. Группировка и агрегация.
  7. Визуализация, seaborn.
  8. Практические задания: Pandas.
  9. Секретный гость.
  10. Stepik ML contest — это ещё что такое?
  11. Stepik ML contest — data preprocessing.
  12. Какого музыканта Beatles я загадал или entropy reduction.
  13. Немного теории и энтропии.
  14. Titanic: Machine Learning from Disaster.
  15. Обучение, переобучение, недообучение и кросс-валидация.
  16. Последний джедай или метрики качества модели.
  17. Подбор параметров и ROC and Roll.
  18. Практика, Scikit-learn, fit, predict, you are awesome.
  19. ML на практике — автокорректор ошибок правописания.
  20. Секретный гость.
  21. Stepik ML contest.
  22. Снова возвращаемся к деревьям.
  23. Random forest.
  24. Зачем знать что-то ещё, если есть Random Forest?
  25. Секретный гость.
  26. И на Марсе будут яблони цвести.
  27. Нейроэволюция.
  28. Трюки в Pandas.
  29. Вот и всё, а что дальше?
  30. Stepik ML contest.

Что усвоишь

  • Основные понятия Data Science и Machine Learning
  • Наиболее популярные Python-библиотеки для анализа данных — Pandas и Scikit-learn

Преимущества

  • Начать обучение можно сразу после регистрации
  • Обучение проводят лучшие преподаватели Института биоинформатики
  • Современная программа обучения
  • Изложение материала простым языком
  • Можно бесплатно получить сертификат по окончании обучения

3. «Нейронные сети‎»

Обучение нейронным сетям

Формат уроков представляет собой видео с выполнением тестов и заданий, а длительность курса из 24 уроков. Есть обратная связь.

Нет сертификата

Начинка

  1. Основы линейной алгебры.
  2. Перцептрон и градиентный спуск.
  3. Алгоритм обратного распространения ошибки.
  4. Мониторинг состояния сети.
  5. Заключение.

Твои навыки после обучения

Заработок на криптовалюте
  • Основы линейной алгебры (векторы и матрицы)
  • Принципы работы нейронных сетей
  • Применение нейронных сетей для решения практических задач

Преимущества

  • Большая обучающая программа
  • Интерактивные тесты и задачи

4. «Знакомство с R ‎и базовая статистика»

Обучение статистике

Длительность курса составляет 20 часов, формат материала видеообучение с выполнением тестов + текстовые пометки.

Сертификат выдаётся после покупки подписки.

В этом из бесплатных курсов по Data Science разберёшь основы статистики и познакомишься с основами языка статистического программирования R.

Будешь использовать средства визуализации (диаграммы, графики и т.п.), чтобы сделать результаты анализа максимально доступными и понятными. Научишься рассчитывать основные описательные статистики: медиану и квантили, среднее и стандартное отклонение..

Твои науки

  • Основы языка программирования R
  • Статистическая обработка данных
  • Создание автоматизированных отчетов с помощью R Markdown и Knitr
  • Тестирование гипотез
  • Визуализация результатов анализа

Преимущества

  • Обратная связь с преподавателями на форуме
  • Гибкие сроки изучения материала
  • Опытные преподаватели
  • Интересная подача материала
  • Хорошие примеры
  • Можно получить сертификат

5. «Эконометрика‎»

Экономическая метрика

Длительность курса составляет 30 часов в формате видеоуроков с выполнением тестов.

Выдача сертификата предусмотрена.

Ты будешь подробно изучать линейные регрессионные модели, рассмотришь наиболее частые отклонения от предпосылок классической линейной регрессии.

Изучишь базовые модели (логит и пробит) для качественных зависимых переменных. Наряду с теоретической основой ты будешь работать с реальными данными, используя статистический пакет R.

Твои навыки после обучения

  • Понимание методов наименьшего квадрата и максимального правдоподобия
  • Исследование закономерности в реальных данных
  • Работа со случайными величинами в R
  • Прогнозирование переменной y
  • Проверка гипотез о коэффициентах в R
  • Понимание взаимодействия переменных

Преимущества

  • Насыщенная программа обучения
  • Работа с материалами в удобное время
  • Опытный преподаватель
  • Много прикладных задач
  • Возможность улучшить имеющиеся знания в эконометрике
  • Общение на форуме с преподавателем

6. «Математическая статистика‎»

Аналитика данных

Длительность курса составляет 29 уроков в формате видео. Выполняешь домашку и тесты.

Выдаётся сертификат после обучения.

Начинка учёбы

  1. Выборка. Описательная статистика.
  2. Точечные оценки. Свойства и методы построения.
  3. Доверительные интервалы. Стратифицированные выборки.
  4. Статистические гипотезы. Параметрические критерии.
  5. Критерии однородности.
  6. Критерии согласия. Таблицы сопряжённости.
  7. Регрессионный анализ.
  8. Заключительный модуль.

Какие знания и навыки получите:

  • Общее понимание теории вероятности
  • Понимание описательной статистики
  • Корреляционный анализ
  • Интервальная оценка
  • Методы построения точечных оценок
  • Доверительные интервалы
  • Регрессионный анализ

Преимущества

  • Обучение возможно в любое время
  • Много полезной информации в свободном доступе
  • Опытный спикер
  • Материалы подкреплены примерами
  • Лёгкая подача информации

7. «Машинное обучение‎»

Машинное обучение

Слушатели курса узнают, как выглядят большие данные, научатся их обрабатывать: восстанавливать пропущенные значения, удалять аномалии, предсказывать значения признаков.

Также слушатели научатся анализировать модели искусственного интеллекта, находить их сильные и слабые стороны, аргументировать свою точку зрения в вопросах, связанных с искусственным интеллектом.

Продолжительность обучения составляет 71 урок в формате видео + тесты с текстовыми материалами.

Обучающая программа

  1. Введение в машинное обучение и основные понятия статистики.
  2. Восстановление пропущенных значений.
  3. Поиск выбросов и аномалий.
  4. Кластеризация.
  5. Задача предсказания, линейная регрессия.
  6. Классификация, kNN, кросс-валидация.
  7. Деревья в машинном обучении.
  8. Линейные классификаторы.
  9. Вероятностные алгоритмы. Наивный Байес.
  10. Ансамбли алгоритмов.
  11. Отбор признаков и объектов.

Твои навыки:

  • Построение моделей машинного обучения
  • Обработка таблиц с данными
  • Восстановление данных с помощью искусственного интеллекта
  • Освоение необходимых терминов на тему машинного обучения для общения с будущими заказчиками
  • Понимание того, какие задачи можно доверить ЭВМ

Как стать аналитиком и где учиться?

Варианты обучения для аналитика с нуля:

  • Самостоятельное обучение – всевозможные видео на YouTube, книги, форумы, самоучители и т.д. Плюсы – дешево или очень недорого.
  • Онлайн-обучение. Пройти курс можно на одной из образовательных платформ. Такие курсы рассчитаны на людей без особой подготовки, поэтому подойдут большинству людей.

Евгений Волик

¡Hola amigos! Здесь я выкладываю подборки с курсами для обучения разным профессиям с нуля. Проект существует с 2021 года и постоянно развивается.

Оцените автора
( Пока оценок нет )
Evgenev.ru